

About CRES

- Founded 1996
- 501(c)3 non-profit organization staffed by volunteer board
- Mission: To educate the public and promote the benefits of renewable energy, and energy efficiency.
- Policy advocacy in the state legislature
- More information, join, or donate at cres-energy.org

HOME ENERGY EFFICIENCY: MYTHS AND MONEY

Jim Riggins (Retired) Building Energy Analyst Monument, CO

- Home Energy Efficiency Basics
- Sample Energy Audit Results
- Common Efficiency Myths

Benefits of Energy Efficiency

- U.S. Dept of Energy Study: 33% decrease in heating bills after weatherization
- Eliminate comfort problems
- Healthier air in the home
- 10% Efficiency Improvement eliminates 1400 pounds of emitted CO2
- Allows for smaller, less expensive solar elec system
 - High return on investment

Where Does the Energy Go?

U.S. Household Energy Use (Percent)

Source: U.S. EIA

- Largest Waste of Home Energy: duct and house air leaks, and insulation problems
- Consumer electronics consumption growing

Cannot Consider Efficiency in Isolation

House is a "System of Systems"

- Heating / Cooling
- Ducts
- Water Heating
- Appliances
- Lighting
- Ventilation
- Insulation
- Air Barrier

Key Point: Think "Thermal Boundary" Not Just "Insulation"

- The thermal boundary <u>must</u> be <u>air sealed</u> and <u>insulated</u>
- Adding fiber insulation over leaky attic floor is mostly ineffective
- Air Barrier vs Vapor Barrier: In most cases a breathable air barrier is desired
- A typical attic loses more energy through air leaks than underinsulation

Common Problem Areas 1

- Attics:
 - Penetrations
 - Knee Walls (Vertical Walls)
 - Insulation
 - Ventilation
 - Ducts
 - Hatches

Common Problem Areas 2

- Crawlspaces:
 - Venting
 - Moisture control
 - Air sealing and insulation
 - Ducts and plumbing

Common Problem Areas 3

- Air Infiltration
 - Fireplaces
 - Sockets
 - Sill and bottom plates
 - Attic fans
 - Recessed lights
 - ...and many more

Hidden Problems

- Air infiltration in stud cavities
- Insufficient insulation
- Leaky cantilever overhangs and window boxes

65% Efficient: Standing Pilot

80% Efficient: Spark Ignition

95% Efficient: Condensing

Direct Vent, Condensing Furnaces also Offer:

- 55% more efficient motors;
- No indoor combustion air;
- Multiple fan and burner stages

Cooling

- Relatively few cooling days
- Hard to recoup investment in air conditioning replacement or upgrade
- Cool, low humidity evenings create higher efficiency options
 - Evaporative coolers
 - Whole house fans
- Ensure proper attic ventilation and insulation
- Most cost effective option: block summer solar heat gain (windows and skylights)

Appliances and Plug Loads

- Typical U.S. Household: 920 kilowatt-hours per month (\$101)
 - Moderately efficient family: 800 kWh/month
 - Focused family: 400 kWh/month
- For typical appliances (excludes hot tubs!), refrigerators consume most electricity
 - Decreased from 1200 kWh/year in 1990s to 550 kWh/year today
- Phantom loads approaching 20% to 25% of consumption
 - Energy consumed when device is "Off"
 - Example: DirecTV box = 22 to 25 watts when off but plugged in (\$18 per year in wasted energy)
- Electric Vehicles: 8000 miles of annual home charging
 - Approx 190 kWh (\$21) per month average (at 3.5 miles/kWh)

Lighting: 10 Year Costs

Incandescent Bulbs: 10% Light + 90% Heat

CFL= Compact Fluorescent Light

- Myth: "Replace your windows and save 40% on your heating bills." (Radio ad)
- Reality:
 - Even with single panes, heat loss through windows is 12% to 30% of total heating bill
 - Standard uncoated double pane vs. ENERGY
 STAR windows: R-2.2 vs. R-3.3
 - Old wood single pane vs. ENERGY STAR: R-1.0
 vs. R-3.3
 - Typical payback time: 50 100 years

- Myth: Save energy by turning down the thermostat and turning on gas fireplace
- Reality:
 - Typical furnace: 80% efficient (Modern: 90-98%)
 - Typical gas fireplace: 15% to 35% efficient
 - Conventional wood fireplace: <5% efficient</p>
- Fireplace pilot lights consume \$12 to \$20 per month. Turn them off in summer!

Pro Tips:

- Pick from EPA Certified Wood Stove list: www.epa.gov/burnwise/epa-certified-wood-stoves
- US doesn't EnergyStar rate gas fireplaces...but Canada does: https://tinyurl.com/nrcanfire

- Myth: Always start in attic when adding new insulation
- Reality:
 - An uninsulated basement or crawl space wastes 5 times more energy than an under-insulated attic
 - Know the payback time when considering additional attic insulation

- Myth: Add more insulation to stop air leaks into attic.
- Reality:
 - Fiberglass and cellulose are <u>not</u> air barriers
 - Air leakage can be wasting more energy than insufficient insulation

- Myth: Can't seal a house too much...a house needs to breathe.
- Reality:
 - A house can <u>never</u> be too tight...but it can be under-ventilated
 - Best to "Make it tight and ventilate right" using efficient, controlled ventilation

Don't Forget Water Costs

The Home Energy Audit

Peak Heat Load Components (kBTU per Hour)

Diagnostic Testing:

- Blower Door (air leakage)
- Duct Blower (duct leakage)
- Thermal imaging
- Combustion gas analysis
- Natural gas leak detection
- Indoor air quality
- Inspections:
 - Insulation
 - Heater, A/C, ventilation
 - Moisture Issues
 - Attic, basement, crawl space
- Electrical, Gas and Water Consumption Analysis
- Modeling and Analysis

Conclusion

- Energy efficiency return on investment not always obvious
- Must consider relationship between efficiency, safety and comfort when performing upgrades

QUESTIONS?